FACULTY OF ENGINEERING

DEPARTMENT OF CIVIL ENGINEERING SECOND SEMESTER EXAMINATION (AUGUST 2018) 2017/2018 ACADEMIC SESSION

Course Title: Basic environmental engineering

Course Code: CVE 506

Adres !

HOD'S SIGNATURE

Instructions:

- 1) Answer 2 questions from section A and 3 questions from section B
- 2) Time Allowed: 3 hours
- 3) SEVERE PENALTIES APPLY FOR MISCONDUCT, CHEATING, POSSESSION OF UNAUTHORIZED MATERIALS DURING EXAMINATION

EG

ELIZADE UNIVERSITY ILARA-MOKIN

Department of Civil and Environmental Engineering B.Sc. (Civil Engineering) Degree Examination Second Semester Examination 2017/2018 Session

Course Code: CVE 506

Course Title: BASIC ENVIRONMENTAL ENGINEERING

Time Allowed: 3HOURS

INSTRUCTION: Answer 2 questions from section A and 3 questions from section B

SECTION A

QUESTION 1 (20 marks).

a. The global environment consists of the atmosphere, hydrosphere and lithosphere in which the life-sustaining resources of the earth are contained. Describe briefly these earth layers (6 marks).

b. What is the biosphere.

(4 marks).

- c. Define:
- i. Environmental Engineering

(5 marks)

ii. Water Pollution

(5 marks).

QUESTION 2 (20 marks).

- a. Outline the investigations you would conduct as an Environmental Engineer and the data you would collect for preparing a water supply scheme for City.

 (10 marks).
- b. Sketch a general layout of a water supply scheme from the sources (River) to the distribution of the treated water to the consumers showing the unit operations and processes. (10 marks).

QUESTION 3 (20 marks).

- a. The quality of sewage can be checked and tested by its physical, chemical and bacteriological (biological) characteristic.
- b. The pollution of stream by sewage discharged into a river by process of self-purification. Outline the process and state some factors which influence the DO Sag-curve. (10 marks).

SECTION B

QUESTION 4 (20 marks).

a. Define pH and explain its implication in water

(10 marks).

b. In a water treatment plant, pH values of in coming and outgoing waters are 7.2 and 8.4 respectively. Assuming a linear variation of pH with time, determine the average value of water. (10 marks).

QUESTION 5 (20 marks).

- a. Define the concept of Biochemical Oxygen Demand (BOD) and what is meant by BOD₅. (6 marks).
- b. State some uses of BOD test results.

(4 marks).

- c. Determine the ultimate BOD for a sewage having a 5-days BOD at 20° c as 180mg/l. assume the base 10 rate constant K = 0.1/day. (4 marks).
- d. Determine the 2-day BOD of the sewage.

(2 marks).

e. A sample of sewage has a 4-day 20°c BOD value of 70% of the final BOD. Find the base 10 rate constant. (4 marks).

QUESTION 6 (20 marks).

- a. The sewage of a town is to be discharged into a river stream. The quantity of sewage produced per day is 8 million liters and its BOD is 250 mg/l. if the discharge in the river is 200l/s. If the BOD is 6 mg/l. Determine the BOD of the diluted water (10 marks).
- b. What should be the above river discharge in the same town, if it is desired to reduce the BOD of the diluted water 20 mg/l? (10 marks)

QUESTION 7 (20 marks).

- a. Explain the following associated with water-based sanitation of a community:
 - i. Sanitation
 - ii. Sullage (Grey Water)
 - iii. Sewers
 - iv. Sewerage
 - v. Sewage

(10 marks)

- b. Calculate the velocity of flow in a sewer of circular section having a diameter of 1.0 m and at a gradient of 1 in 400, flowing half-full. (7 marks)
- What will be the discharge through the sewer when running half-full? Use manning's formula, taking n =
 0.012